You are here: Home / Research / Groups / Complex coupled systems / _Abstracts / alderkamp_2011

alderkamp_2011

by zopeadm — last modified Nov 28, 2011 05:39 PM

Short-term photoacclimation effects on photoinhibition of phytoplankton in the Drake Passage (Southern Ocean),

 

A.-C. Alderkamp, V. Garçon, H. J. W. de Baar, and K. R. Arrigo.

Deep Sea Research part I, 58, 9, 943-955, doi:10.1016/j.dsr.2011.07.001

 

 

We assessed whether short-term photoacclimation responses of natural phytoplankton populations in the Drake Passage (Southern Ocean) were affecting protection from photodamage as cells are mixed up to the surface from depth. To this end, we measured phytoplankton fluorescence characteristics and their ratio of xanthophyll cycle pigment to photosynthetic pigments within the upper mixed layer (UML) and in short-term deck incubation experiments. Phytoplankton within the UML photoacclimated by increasing their ratio of xanthophyll cycle (diadinoxanthin [dd] and diatoxanthin [dt]) pigments to chlorophyll a. The photoacclimation processes observed within the UML did, however, not influence the protection of phytoplankton from photodamage during short-term near-surface irradiance experiments. Exposure to near-surface irradiance resulted in photodamage in all experiments, regardless of the phytoplankton community composition and irradiance levels. Incubating phytoplankton for six hours at either 2% or 50% of surface irradiance prior to exposure to near-surface irradiance did not alter the photodamage characteristics. This suggests that short-term photoacclimation processes within the UML are not adequate to protect phytoplankton from photodamage when cells are mixed up to the surface from depth, and that repair of damaged photosystems is crucial for maintaining photosynthesis under fluctuating irradiance conditions, even at very low mean irradiance levels. Likely, continuously operating photoacclimation processes offset to some extent the negative effects of photodamage on photosynthetic performance, albeit with increased metabolic costs.

 

 

 

-> Retour à la liste des publications

Document Actions

logo cnes logo IRD Logo université de Toulouse Logo université Paul Sabatier Logo CNRS
Logo bibliothèque OBS Logo Observatoire Midi Pyrénées