Wind wave measurements and modelling in a fetch-limited semi-enclosed lagoon

Aymeric Jouon a,⁎, Jean Pierre Lefebvre a,1, Pascal Douillet a,1, Sylvain Ouillon c,1, Loys Schmied b

a UR Camelia, IRD, BP A5, 98848 Noumea cedex, New Caledonia
b LSEET-LEPI, Université du Sud Toulon-Var, BP 132, 83957 La Garde cedex, France

1 Université de Toulouse, IRD, LEGOS, 14 avenue E. Belin, 31400 Toulouse, France

A R T I C L E I N F O

Article history:
Received 12 September 2007
Received in revised form 9 December 2008
Accepted 17 December 2008
Available online 30 January 2009

Keywords:
Wave modeling
Wave measurement
Wind waves
Fetch-limited
WAVEWATCH
Lagoon
New Caledonia

A B S T R A C T

The south-west reef lagoon of New Caledonia is a semi-enclosed basin where, on first approximation, dominating sea state component corresponds to locally generated wind waves. This study aims to evaluate the ability of the wave model WAVEWATCH III to simulate wave wind distribution in this particular fetch-limited context, with a given parameterisation. In order to evaluate the consistency of the simulation results, wave parameters were measured in situ by a wave and tide recorder (WTR9 Aanderaa) and by an acoustic Doppler velocimeter (ADV Sontek). This study underlines specific constrains for the deployment of instruments to assess the characteristic parameters of low amplitude and high frequency wind-waves. Special care was taken in the comparison step as, on one hand the wave model did not simulate the propagation of low-frequency oceanic waves inside the lagoon, and on the other hand the measured spectra bear an intrinsic limitation for high frequencies. The approximation of a sea state dominated by wind waves is verified on the study site. The accuracy of the simulation results is discussed with regards to the wind forcing applied to the model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In many coastal environments, waves have a major effect on resuspension of benthic particles (Booth et al., 2000; Prandle et al., 2000). In the South-West Lagoon of New Caledonia (SLNC) resuspension is the main origin of suspended particles, except during floods which are scarce and generally short (a few days per year at maximum) (Clavier et al., 1995). The SLNC constitutes a reference site for investigating the anthropogenic impacts on a coastal coral reef ecosystem. Since 1996, different parameters have been monitored in order to quantify the hydrodynamic functioning of the lagoon. Amongst others, physical parameters of the water column (Ouillon et al., 2005), turbidity by in situ measurements (Jouon et al., submitted for publication) and remote sensing (Ouillon et al., 2004), energy transfer across the barrier reef (Bonneton et al., 2007) have been extensively achieved. Finally, most of these parameters have been used for calibration and validation of numerical model simulations based on the coupling of a 3D hydrodynamic model with a fine particle transport model (Douillet, 1998; Douillet et al., 2001; Jouon et al., 2006). In the previous applications, the 3D hydrodynamic model took into account the tide and the wind but not yet the wave field.

So as to improve the sediment transport numerical model in such a shallow environment, it is necessary to simulate the wave field. The wave model will then be coupled to the hydro-sedimentary model (Grant and Madsen, 1979; Zhang and Li, 1997). Furthermore, a realistic wave model is required to simulate the extreme wind seas under cyclonic conditions.

In open lagoons, ocean waves and wind waves superimpose. In the SLNC, passes are relatively narrow compared to the enclosing reef extension (Fig. 1). Although ocean waves are strongly attenuated by wave breaking and friction over the enclosing reef flat (Bonneton et al., 2007), some of the oceanic waves enter the lagoon through the passes. The local wind intensity coupled to the dimensions of this semi-enclosed basin make it possible for wind to generate waves. A higher limit estimation of sea state characteristics can be assessed following the empirical SMB (Sverdrup, Munk, Bretschneider) method (Bretschneider, 1970). For a 10 m s⁻¹ trade wind blowing over a 45 km fetch, during at least 5 h, the SMB method gives a significant wave height of 1.25 m and a 5 s peak spectral period in infinite depth.

In that context, this study was conducted to evaluate the ability of a wave model to simulate the wind wave field in a coastal semi-enclosed and fetch-limited environment and to quantify oceanic waves entering the domain. The work was conducted by application of the WAVEWATCH III model to the SLNC. The model results are compared with in situ measurements at different locations and under variable wind forcing conditions. In order to obtain measured data that are compatible with model outputs, the deployment of wave-meters required special care. On one hand, the implementation of WAVEWATCH used in this study did not simulate the transformation
of oceanic waves, whose frequencies are low (<0.1 Hz). On the other hand, due to attenuation of high frequency components with depth, there is an intrinsic limitation of measured spectra at high frequencies. This last limitation is severe for wind waves in fetch-limited environments. This study illustrates how to select deployment locations for fetch limited wind waves measurements. It also underlines the importance of optimising the choice of the cut-off frequency in order to assess the most important part of the wind wave power spectrum. The comparison of simulated and measured wave spectra is performed over a windowed frequency spectrum. The results of the comparison may also constitute a guideline for the use of WAVEWATCH as a source of wave data for coastal engineering projects in fetch limited environments.

2. The study site

New Caledonia is a tropical island located in the Western Pacific, about 1500 km east of Australia. It is surrounded by a 22,200 km² lagoon. Noumea, the island’s main city, is located on the south-west coast. The lagoon area which surrounds Noumea is called the SLNC. The SLNC whose average depth is 17.5 m houses many coral reef islands (Fig. 1). It is separated from the open ocean by a barrier reef incised by deep and narrow passes and distant to the coast from 5 km (northern limit) to 40 km (southern limit) (Fig. 1).

The local wind generates waves in the semi-enclosed lagoon, resulting from the wind action over a fetch of a few tens of kilometres long at maximum. Except for episodes of low wind intensity, the wind wave field is fetch limited. The mean wind waves periods are short (<5 s).

Statistics analysis of meteorological data (Douillet et al., 2001; Ouillon et al., 2005) brought out that the most frequent and long-lasting wind forcing was generated by South-East trade wind regime. A second wind regime was also identified; it corresponds to more variable short lasting Westerly wind events.

3. Materials and methods

3.1. Field measurements

Two devices have been used in this study: a wave and tide recorder (WTR9, Aanderaa) and an acoustic Doppler velocimeter (ADVOcean, Sontek). For each measurement session, they were deployed simultaneously at the same location, mounted on a nonmagnetic structure that assures the sensors to be located 0.5 m over the seabed. Pressure measurements were achieved every 30 min.

3.2. Sampling strategy

Since the wave-induced pressure and velocity amplitude decrease exponentially with depth, when the signal to noise ration (SNR) becomes too weak, waves become undetectable at depths greater than a half wave length. According to this limitation, in this study, the maximum deployment depth was estimated under mean trade wind condition to about 5 m from the mean water level.

The short wave period context required taking special care in choosing the location and depth for the in situ measurements. The deployment conditions have to meet two opposite criteria; on one hand, the nearer the gauge to the mean water level, the higher the potential cut-off frequency; on the other hand, the probes have to be deployed close to sea-bed to avoid boat collisions during measurement episodes. For these reasons, shallow water areas were selected for deployment.

Due to topographic constrains, the wind intensity and direction vary from the outer lagoon to the head of bays. As the forcing wind in the model was measured in the outer part of the lagoon, we have selected shallow areas in the outer part of the lagoon. These specific locations correspond to the surroundings of coral islands within the lagoon.

Finally the measurement locations had to potentially correspond to areas where the wind waves reach maximum amplitude. This criterion was better met on the windward sides (defined for the main trade wind) of small reefs or small islands, within the main track of the lagoon where the wind waves have the greater fetch.

Three stations were monitored during this study (Fig. 1). WO station was the most southward site and received an oceanic influence through the Boulari pass. WG stations are located approximately at equal distance between the shore and the barrier reef. Two deployments took place nearly at the same location: WG1 from May 19 to June 1, 2006, and WG2 from June 8 to June 11, 2006. For technical reasons, the experiment at WG2 was shorter lived. WT was the closest station to the shore. Summary of the deployment sessions is given in Table 1.
3.3. WTR9 wave parameters estimation

WTR9 samples pressure at the frequency of 2 Hz over 512 s long episodes. The device includes an inboard processing routine that directly estimates the significant height \(H_s \) and the mean zero crossing period \(T_{02} \). Prior to deployment, WTR9 required selecting a distance to seabed and a mooring depth amongst fixed intervals for data analysis purpose. WTR9 sets automatically the cut-off frequency \(f_c \) according to the deployment depth \(f_c = 0.5 \text{ Hz for deployment at 5 m depth).} \)

3.4. ADV wave parameters estimation

The used ADV Sontek is equipped with a high accuracy resonant pressure transducer (Drück). It yields time series sampled at 5 Hz of pressure and tri-dimensional components of velocity over 410 s long episodes.

3.4.1. Non-directional parameters

In a first step, the pressure time-series collected by ADV were used to determine the wave spectrum and non-directional wave parameters. The mean water level (MWL) was estimated from each pressure sample burst as the mean pressure corrected by the sensor value, counted positively upward, where

\[
\rho = \text{the water depth,} \\
\gamma = \text{the acceleration of gravity and} \\
k = \text{the wave number.} \]

For each frequency, the corresponding wave number is computed using the generalized first order dispersion relationship for surface wave (Leblond and Mysak, 1978) and neglecting all ambient currents (Eq. (4)).

The PSD corresponding to the elevation of the sea surface is hereafter called wave spectrum. It is used to estimate \(H_s \) and \(T_{02} \) according to:

\[
H_s = 4 \sqrt{m_0} \\
T_{02} = \sqrt{\frac{m_0}{m_2}}
\]

where the statistical zero and second moments \(m_0, m_2 \) are estimated from the wave spectrum \(P_s(f) \) bounded by a low frequency \(f_l \) and the cut-off frequency \(f_c \) as follows:

\[
m_k = \int_{f_l}^{f_c} P_s(f)f^k df
\]

3.4.2. Directional density power spectrum

The directional density power spectrum was assessed using the wave spectrum \(P_s(f) \), computed from the ADV pressure time-series and the spreading function \(D_s(f,\theta) \) derived from the tri-dimensional components of velocity measured by the ADV. We assume that the directional density power spectrum results from two decorrelated functions of the elevation of the sea level, \(P_s(f) \) and \(D_s(f,\theta) \), according to:

\[
P_n(f,\theta) = P_s(f) \cdot D_s(f,\theta)
\]

Inboard processing of ADV corrects the pitch and roll, and gives the Northward, Eastward and Upward velocity components according to the local magnetic direction reference. A supplementary correction must be applied by the user in order to convert the velocity components into the geographical reference.

The spreading function \(D_s(f,\theta) \) was computed from the East- and North-wave orbital velocity data. These measurements were scaled so that they had equal standard deviation and zero mean. The spreading function was estimated by use of routines adapted from the ones developed by the Wave Analysis for Fatigue and Oceanography Group (WAFO Group, 2000). At this stage, the optimal cut-off frequency was selected in order to extend the high frequency bound at the most. The one sided auto and cross power spectral densities of velocity were estimated and the corresponding transfer function \(G_w(f) \) was applied:

\[
G_w(f) = 2\pi \frac{\cosh(k(h + z))}{\sinh(kh)}
\]

The extended maximum entropy method (EMEM) was used to estimate this function (Hashimoto, 1997). The obtained spreading function \(D_s(f,\theta) \) was normalized in order to fulfill the condition:

\[
\int_0^{2\pi} D_s(f,\theta) d\theta = 1
\]

Some artificial low energy peak may appear out of phase with the main peak, when the latter is of high energy. This drawback is inherent to the method, when second order parameters are estimated. The EMEM iteratively seeks the optimal order for the estimation (Hashimoto, 1997). For our dataset, the optimum order was always comprised between 2 and 3. Nevertheless, the eventual appearance of a weak artificial peak cannot conduct to an ambiguity in the main direction.

3.5. Numerical modelling

3.5.1. WAVEWATCH III

The WAVEWATCH model was implemented to simulate the wave generation and propagation in the SLNC (Bel Madani, 2003). WAVEWATCH, a ‘state-of-the-art’ spectral wave model for deep and intermediate water depths, is a third generation wave model developed by Hendrik Tolman at NOAA/NCEP (US National Center for Environmental Prediction). It is based on previous versions of WAVEWATCH (e.g.
Tolman, 1989). Version 1.18 of WAVEWATCH (Tolman, 1999) was used in this study. Other similar wave models are also in the public domain, such as the WAM-Cycle 4 explicit model (WAMDIG, 1988; Monbarlit et al., 2000) or the SWAN implicit model (Boujo et al., 1999; Ris et al., 1999). Given the spatial extent of the model (approximately 40 km long and 30 km wide), the propagation scheme of the model used was of major importance. SWAN, better fitted to domains of smaller extent, was known to be more diffusive than WAVEWATCH III (Rogers et al., 2002).

A detailed description of the model is given in Tolman (1989, 1991a,b) and the source terms are fully presented in Tolman and Chalikov (1996). The progresses made in the most recent studies which investigate the governing equations for wind wave propagation and generation (WISE Group, 2007; Ardhuin et al., 2007), are periodically included in the model. The aim of this study is to assess the capacity of WAVEWATCH, implemented in a fetch limited environment, with a given spatial resolution and parameterisation, to reproduce the measured wave climate. The physics of the model is not discussed in this study and is thus briefly presented hereafter.

Wind waves are usually described with an energy or variance density F that depends on wave parameters such as the wave number, the intrinsic or relative frequency ω (as observed in a frame of reference moving with the mean current U), the absolute frequency ω (as observed in a fixed frame) and the wave direction θ. In the linear theory of surface gravity waves on slowly varying depths and currents (e.g. Leblond and Mysak, 1978), wave number and frequencies are interrelated in the dispersion relation. After sensitivity analysis on WAVEWATCH-simulated H_s on the SLNC, the choice was made that the implementation of WAVEWATCH in the SLNC does not take into account neither the effects of currents on the wave field, nor the time variations of surface elevation ($U = \overrightarrow{0}; \omega = \omega$). The dispersion relation is considered as in Eq. (4).

In WAVEWATCH, changes of the variance density F due to propagation over varying depths and currents are described using the action balance equation:

\[
\frac{\partial N}{\partial t} + \nabla \cdot \left(\frac{\partial}{\partial \theta} \left(C_w N \right) + \frac{\partial}{\partial \omega} \left(C_o N \right) \right) = \frac{S_{\text{wind}}}{\sigma} + \frac{S_{\text{nl}}}{\sigma} + \frac{S_{\text{bd}}}{\sigma} + \frac{S_{\text{fr}}}{\sigma} \tag{11}
\]

where $N = F(x, y; \omega, \theta; t)$ is the action density spectrum, C_w is the group velocity, and C_o and C_r are the propagation velocities of frequency and direction, respectively, in spectral space. The left-hand terms of Eq. (11) represents the local rate of change of wave action density, propagation, and shifting of frequency and direction due to temporal and spatial variations of the mean water depth and the mean current (tides, surges etc.). S_{wind} represents wave growth and decay due to the actions of wind. S_{bd} corresponds to the whitecapping and turbulent dissipation. S_{nl} stands for the nonlinear wave-wave interactions, and S_{fr} represents the bottom friction dissipation. S_{wind} and S_{bd} refer to separate processes, but they may be considered as inter-related, since their balance governs the integral growth characteristics of the wave model. Two source term options are available in WAVEWATCH for these two terms: the first is based on cycles 1 through 3 of the WAM model (WAMDIG, 1988); the second, based on Tolman and Chalikov (1996), is adapted for fetch-limited conditions and was used in this study. Nonlinear wave-wave interactions are modelled using the discrete interaction approximation of Hasselmann et al. (1985) for S_{nl}. S_{bd} is modelled by the empirical JONSWAP expression (Hasselmann et al., 1973). The model outputs are the directional wave spectrum and several synthetic parameters retrieved through computations based on the directional wave spectrum.

3.5.2. Wave model implementation in the southwest lagoon of New Caledonia

The computation of the numerical model was performed on a laptop computer with an AMD 64 bit 3200+ processor. During the wave recordings, wind was continuously measured at 10 m altitude at one station in the SLNC (see location in Fig. 1). Wind data at Ilet Maître were averaged over 30 min and used as input for the wave model. In the numerical simulation hereafter presented, wind is assumed to be homogeneous over the calculation area.

The implicit assumption of the considered equations is that the medium (depth and current) as well as the wave field vary on time and space scales that are much larger than the corresponding scales of a single wave. The modelled physics do not cover conditions where the waves are severely depth-limited or in the case of wave reflection. The model can be applied outside the surf zone at spatial scales of several hundreds of meters up to several kilometres. The calculations over the SLNC were performed on a Cartesian grid, with a 500 m mesh size in both directions. The grid is the same as those of the hydrodynamics and sediment transport model described in Douillet et al. (2001).

The WAVEWATCH output result used in this study is the given directional wave spectrum. Although WAVEWATCH gives the average period and the significant wave height, as the WTR9 used in this study gives T_{02} and H_s, we chose to compute T_{02} from the directional wave spectrum in order to compare the same statistical parameters from measurements and simulations. For better consistency, and to be capable of performing high frequency filter on the WAVEWATCH data, we chose to do the same for H_s.

3.6. Selecting the shared frequency band

In order to evaluate of the ability of WAVEWATCH to simulate wind waves in the SLNC, we chose to bound the modelled spectra up to the cut-off frequency fixed for measurements and the measured spectra down to the lowest modelled frequency in order to filter the swell. The obtained bandwidth corresponds to the wind wave field truncated by cut-off frequency.

3.6.1. Cut-off frequency

The cut-off frequency (f_c) plays an important role in the representation of the wave spectrum given by the probes used in this study. This parameter has no absolute value, but is only an empirically selected parameter. The cut-off frequency is strongly related to the deployment settings by the surface to depth transfer functions. It is also related to the magnitude of the high frequency components and subsequently to the sensor sensitivity. It is defined as the highest frequency value which corresponds to a component with an acceptable SNR.

As stated before, the value of f_c can only take pre-selected values for the WTR9. For deployment conditions on all sites, it corresponded to a cut-off frequency value of 0.5 Hz.

The choice of a too high cut-off frequency produces a rise in the sea surface elevation PSD at frequencies concomitant to cut-off frequency. The value of the cut-off frequency was chosen to match the highest value that does not produce such side effects. For comparison matter, we also chose to limit the selection to the frequency scale simulated by the model:

\[
f_i = 0.11 \times 1.1^{i-1} \tag{12}
\]

where i corresponds to ith frequency class of WAVEWATCH. Following these guidelines, the cut-off frequency was set to 0.46 Hz for the ADV.

3.6.2. Lowest frequency

Oceanic waves propagating inside the SLNC where identified by their low frequencies (<0.1 Hz). No simulated wind waves reach such low frequencies on the SLNC. In order to evaluate the capacity of WAVEWATCH to simulate wind waves on the SLNC, the filtering
of frequencies lower than 0.17 Hz was performed on the measured sea surface elevation DSP. This frequency value is low enough not to interfere with wind waves frequencies and high enough to filter swell.

3.7. Swell contribution to SLNC wave field

Filtering non-simulated wave field components (i.e. swell) also allows quantifying the contribution of these components to the global

Fig. 2. Wind Forcing, H_s, and T_{20} from WTR9 and ADV, for all records.
wave field from measurements. It is done by comparing the values of \(H_s \) and \(T_{02} \) of filtered and non-filtered data. The contribution of filtered wave component to the statistical parameters \(H_s \) is computed following the equation:

\[
\%H_{s,\text{swell}} = \frac{H_s - H_s^F}{H_s} \times 100
\]

where subscript \(F \) stands for swell filtered data. \(H_s \) can be replaced by \(T_{02} \) to compute the contribution of the swell to the mean zero crossing period.

3.8. Assessing the ability of WAVEWATCH to simulate wind waves

The agreement between simulations and measurements is assessed through correlation coefficient and linear regression computations over \(H_s, T_{02} \) and the mean direction of the wave field \((\theta_m) \). The closer the correlation factor is to unity, the better the likelihood between model and measurements. The best least squares fitted line between measurements and simulations yields a regression factor \((a) \) which can be interpreted as an amplification factor between measurements and simulations. The rms error is also computed for quantification of differences between simulations and measurements.

4. Results

4.1. Meteorological conditions during experiments

During the first sequence of measurements (station WO), the wind intensity was globally weak (\(\leq 5 \text{ m s}^{-1} \)) and of variable direction with three episodes of established trade wind from SE of an approximate speed of 10 m s\(^{-1}\) (March 31; April 3 and 10) (Fig. 2).

![Fig. 3. Wind conditions and swell contribution to SLNC wave field for all deployment sessions determined from ADV measurements.](image-url)
The second sequence of measurements (station WG1: from May 19 to June 1, 2006) was globally characterised by medium intensity trade wind ($\leq 10 \text{ m s}^{-1}$) with two major episodes (May 19 and 27) separated by with light western winds (Fig. 2).

Due to its brevity, the third sequence of measurements (station WG2) displayed more homogeneous wind conditions, typical of an established trade winds ($\approx 10 \text{ m s}^{-1}$) (Fig. 2).

During the last sequence of measurements (station WT), wind varied slowly following 5 successive stages (Fig. 2). The established Southern wind ($\approx 10 \text{ m s}^{-1}$) gradually decreased the next two days, to near zero with a direction shifting to North. The next five days, the direction progressively shifted North-East through South with wind strengthened to velocity comprised between 5 and 10 m s$^{-1}$. A two days light trade wind episode occurred followed by a one day episode of established trade wind. The deployment session ended with a trade wind episode of variable intensity.

While the wind intensity and the H_s curves show similar trends, no correlation was found between the wind intensity and T_{02} (Fig. 2).
Fig. 5. Direction spreading of WAVEWATCH simulated wind wave field and ADV swell filtered wave field measurements, for all records.
corresponding low H_s phases, as it can be seen with WG1 and WT data. This bias results of the limited versatility for implementing the actual mooring conditions with a WTR9.

In a second step, swell frequencies were withdrawn from ADV measurements. Each applied high pass filter was tuned on the highest frequency of the swell contribution of the specific measured spectra.

Filtering of swell component gave access to the contribution swell to the wave field. The contribution of swell to H_s and T_02 (Fig. 3) yielded the similar trends. For both parameters, the influence of the swell relatively to the entire wave field was only significant during very low intensity wind episodes or when the wind direction corresponded to a relatively small fetch. When an established trade wind regime was responsible of a well developed wind wave field, the contribution of oceanic waves to overall wave height did not exceed 3% (Fig. 3, station WG2). A threshold value for wind intensity of approximately 5 m s$^{-1}$ (Fig. 3, station WO) before which the contribution of swell to statistic wave field parameters becomes significant (percentage of swell related H_s to the overall H_s around 50%) was identified. The same type of increase in swell contribution to the wave field was identified for specific changes in wind direction (Fig. 3, station WT, black boxed peak). The decrease in wind intensity along with a variation in wind direction, leads to the same feature (Fig. 3, stations WT and WG1, grey boxed peaks).

Filtering the swell component from the wave field allowed us to compare WAVEWATCH simulations and measurements over a shared frequency band. The gain of such filtering for comparison purpose is analysed by comparing the results of regression analyses between simulated data against filtered and non filtered measurements.

4.3. Comparison between measured and simulated data

4.3.1. H_s and T_02

Spectra issued from WAVEWATCH were compared both with non swell filtered and swell filtered measured spectra and windowed over a similar frequency range (Table 2).

The correlation computed for H_s between WAVEWATCH and ADV was systematically improved after swell filtering, as indicated by higher correlation coefficients (Table 2).

Simulated H_s closely follows the same trend as measured H_s. WAVEWATCH tends to slightly underestimate H_s during light wind episodes (<5 m s$^{-1}$), while it slightly overestimate H_s during stronger wind episodes (>5 m s$^{-1}$). This feature is particularly obvious when the results obtained during the deployment with lowest wind velocities (Fig. 4, station WO) and those with the highest wind velocities (Fig. 4, station WG2). Since the study implied to narrow the spectral bandwidth of the simulated data in order to match the filtered field measurements spectra, the simulated H_s were computed from the directional wave spectrum given by WAVEWATCH. Unfortunately, the precision of the used output format is poor; the minimum ASCII value representing 10^{-3} m2 s at most. This feature is responsible of a truncation that artificially drops to zero the value of H_s during episodes of very weak wind intensity (Fig. 4, stations WO, WG1 and WT).

For all deployments, the correlation coefficients were over 0.90 except for station WG2 where it reached the acceptable value of 0.79. The regression factors for H_s (i.e. the slope of the linear regression relationship between WAVEWATCH results and swell filtered ADV measurements) were slightly over unity. Despite the artificial underestimation of H_s by WAVEWATCH during low intensity wind episodes due to truncation errors, the regression factor values reveals the tendency of WAVEWATCH to globally overestimate H_s. The highest value of regression factor ($a = 1.19$) corresponds to the windiest deployment (WG2), the lowest regression factor ($a = 1.13$) corresponds to the most calm deployment. However, the overestimation of H_s by WAVEWATCH is limited as indicated by the computed value of the rms error that did not exceed 13 cm on all deployments. The mean overestimation of H_s by WAVEWATCH has been computed over all deployments to a value of 33%.

4.3.2. Wind waves direction

The directional-spread of wind waves obtained by ADV and WAVEWATCH are consistent and vary in agreement with the wind intensity (Fig. 5). During higher energy events, the directional spreading of waves measured by ADV is wider than that simulated using WAVEWATCH. This directional spreading is likely caused by a drawback of the computational method. When the EMEM estimates second order parameters, it creates a secondary artificial wave train in the directional spreading function that comes from the opposite direction of the sensed wave train.

The mean direction of wave field (Kuik et al., 1988; Arduin et al., 2003a,b) did not yield as good correlation coefficient for deployments WO, WG1 and WG2 as the two other statistical wave parameters (Table 3). For these three cases and despite the visual correspondence of wave energy directional spreading (Fig. 5), the rms error reaches high values. On the other hand, for WT deployment, the correlation coefficient is very close to unity ($r = 0.88$). This better correlation obtained at station WT is explained by the wider range of wind direction that occurred during the field measurements (Fig. 2). On the contrary, the poorest correlation coefficient is met for measurements at station WG2, where the range of variation in the wind direction was the weakest (around a mean 100° average direction) (Fig. 5). The limited variation of wind direction combined to the occurrence of a secondary artificial wave train in the directional spreading function due to EMEM likely constitutes the major explanation of these poor results. However, due to increasing computational cost, the resolution of direction is of 30°. Knowing this technical limitation, the values of rms error between modelled and measured wave field direction yield relatively good results.

5. Conclusion

This study has demonstrated the ability of WAVEWATCH to simulate the intensities and direction of the spectral components of a fetch limited wind wave field. The slight overestimation of H_s by WAVEWATCH could be dealt with by adopting a correction factor on the intensity of wind used to force the model as suggested in Toman (2002). By comparing simulations and filtered spectra of measured data at various locations in the SLNC, it has been shown that the swell contribution has no significant influence on the higher frequency components of the spectra. The general frame of this study constitutes a generic method for improving the technique for assessing wave model’s ability to simulate wind waves in a fetch-limited context.

Table 3

Parameters of the best fitted linear regression relationship between mean wave direction θ_{me} calculated using WWATCH and θ_{em} estimated from swell filtered ADV measurements.

<table>
<thead>
<tr>
<th>Station</th>
<th>N</th>
<th>a</th>
<th>r</th>
<th>rms error</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO</td>
<td>240</td>
<td>0.87</td>
<td>0.40</td>
<td>63.209</td>
</tr>
<tr>
<td>WG1</td>
<td>395</td>
<td>0.93</td>
<td>0.40</td>
<td>70.727</td>
</tr>
<tr>
<td>WG2</td>
<td>141</td>
<td>0.90</td>
<td>0.21</td>
<td>30.664</td>
</tr>
<tr>
<td>WT</td>
<td>526</td>
<td>1.11</td>
<td>0.88</td>
<td>24.137</td>
</tr>
</tbody>
</table>

Simulated T_02 follow the same trend as measured T_02. The filtering of swell considerably improved correlations between simulated and measured T_02. Every time the WAVEWATCH wave spectrum was artificially null (during light wind episodes, due to truncation errors), the computation of T_02 could not be performed. However, WO, WG1 and WT show a correlation coefficient superior to 0.7 (Table 2). The regression factors between measured and simulated T_02 were lower than for H_s. All regression factors for T_02 are slightly below unity, this indicates that the modelled T_02 values are slightly lower than the measured ones. However, the rms error did not exceed 0.36 s for all deployments. The mean underestimation of T_02 by WAVEWATCH has been computed over all deployments to a value of 6%.

4.3.2. Wind waves direction

The directional-spread of wind waves obtained by ADV and WAVEWATCH are consistent and vary in agreement with the wind intensity (Fig. 5). During higher energy events, the directional spreading of waves measured by ADV is wider than that simulated using WAVEWATCH. This directional spreading is likely caused by a drawback of the computational method. When the EMEM estimates second order parameters, it creates a secondary artificial wave train in the directional spreading function that comes from the opposite direction of the sensed wave train.

The mean direction of wave field (Kuik et al., 1988; Arduin et al., 2003a,b) did not yield as good correlation coefficient for deployments WO, WG1 and WG2 as the two other statistical wave parameters (Table 3). For these three cases and despite the visual correspondence of wave energy directional spreading (Fig. 5), the rms error reaches high values. On the other hand, for WT deployment, the correlation coefficient is very close to unity ($r = 0.88$). This better correlation obtained at station WT is explained by the wider range of wind direction that occurred during the field measurements (Fig. 2). On the contrary, the poorest correlation coefficient is met for measurements at station WG2, where the range of variation in the wind direction was the weakest (around a mean 100° average direction) (Fig. 5). The limited variation of wind direction combined to the occurrence of a secondary artificial wave train in the directional spreading function due to EMEM likely constitutes the major explanation of these poor results. However, due to increasing computational cost, the resolution of direction is of 30°. Knowing this technical limitation, the values of rms error between modelled and measured wave field direction yield relatively good results.

5. Conclusion

This study has demonstrated the ability of WAVEWATCH to simulate the intensities and direction of the spectral components of a fetch limited wind wave field. The slight overestimation of H_s by WAVEWATCH could be dealt with by adopting a correction factor on the intensity of wind used to force the model as suggested in Toman (2002). By comparing simulations and filtered spectra of measured data at various locations in the SLNC, it has been shown that the swell contribution has no significant influence on the higher frequency components of the spectra. The general frame of this study constitutes a generic method for improving the technique for assessing wave model’s ability to simulate wind waves in a fetch-limited context.
In the shallow water domain, special attention must be paid for acquiring data and to process accurate directional spectra. Because of its high versatility, the use of an ADV proved to be necessary for conducting proper field measurements. Since it has no absolute value, the cut-off frequency constitutes one of the most challenging parameters to be determined. Since the cut-off frequency was susceptible to interfere with the representation of the wind wave energy spectrum, it has been tuned a posteriori, by analysis of the obtained spectrum. The post processing technique based on the EEMEM method has yielded accurate spectra over a large bandwidth.

On one hand, the analysis of the lower frequency bands of the directional wave spectra yielded useful information about the oceanic swell entering the SLNC, and, on the other hand, the analysis of the higher frequency bands has been used to conduct a comparison to WAVEWATCH simulation results. Finally, it has been proved that neglecting the influence of the swell into the lagoon constituted an acceptable approximation in average wind conditions, for simulating the wave field on the SLNC.

This analysis also suggests that other components of the wave field, such as induced by wave reflection, could be identified through the analysis of the directional spreading of the wave field. Enhancing the spatial resolution of the model could provide a better correspondence in mean wave field direction between simulated and measured data. The use of spatially variable wind forcing in the model could also improve the correspondence of simulated mean wave field direction to the measurements.

The location of measurements had been selected under numerous constrains amongst which the absence of interference of topographic features with the wind wave field. Taking in account the influence of waves on suspended sediment transport near the shore where topographically induced spatial variability of wind are more likely to take place, could require the use of a more sophisticated wind distribution hindcasted by a high-resolution atmospheric model.

Acknowledgments

