ROMS_SEC2
Contribution of ROMS to the SECALIS2 analysis: Work in progress
A. ROMS simulation forced by Mercator (ORCA05 interannual with assimilation of SLA), Zoom Nouvelle Calédonie au 1/12°
Etat des lieux:
The sections are sampled every 10 km (Résolution of the run)
The transport in the "Grand Passage" is of 1.5 SV which cannot explain the difference.
A.1 Section Huon-Santo
A.1.a Section.gif
A.1.b Temperature, Salinity
1. Sections: Temperature.gif , Salinity.gif
2. Relation TS: TetaS.gif (New 5/03/07)
A.1.c Velocity
1. U_Roms.gif
2. V_Roms.gif
3. Geostrophic velocity relative to 2000m: Ugeo_0-2000.gif ; with density.gif
4. Roms Velocity across the section (positive for the outflow)
a. Total velocity: UT ROMS (0-2000); UT ROMS (0-4000)
b. Velocity referenced at 2000m UT ROMS
A.1.d Cumulated mass transport
The 26 sigma separates the surface layers from the bottom layers.
A fix depth at 265 m is chosen for the depth of this density level.
Transports computed between: 0-2000; 0-265; 265-2000, 0-bottom
1. From Geostrophy: Transports.gif
2. From the velocity fields, two methods are used:
a. Using U,V across the meridional and zonal sections
Transports from UV.gif
b. Using the transverse velocity
1. Total velocity transports from UT
2. Velocity referenced at 2000m transports from UT
There is a bias between both methods. The explanation could be a storage inside the domain defined by the section and its zonal and meridional projections????
A.2 Circulation in the domain
A.2.a 0-2000m depth integrated velocity December 2004.gif averaged over 2004
A.2.b 0-265m depth integrated velocity December 2004.gif averaged over 2004
A.2.c 265-2000m depth integrated velocity.gif December 2004.gif averaged over 2004
A.2.d 0-Bottom depth integrated velocity December 2004.gif averaged over 2004
1. PDF plot for the paper
A.2.e Bathymetry between Vanuatu Islands
A.3 Section Santo-Noumea
A.3.a Section.gif
A.3.b Temperature, Salinity
1. Sections: Temperature.gif , Salinity.gif
2. Relation TS: TetaS.gif
A.3.c Velocity
1. U_Roms.gif
2. V_Roms.gif
3. Geostrophic velocity relative to 2000m: Ugeo_0-2000.gif ; with density.gif
4. Roms Velocity across the section (positive for the outflow)
a. Total velocity: UT ROMS (0-2000); UT ROMS (0-4000)
b. Velocity referenced at 2000m UT ROMS
A.3.d Cumulated mass transport
The 26 sigma separates the surface layers from the bottom layers.
A fix depth at 280 m is chosen for the depth of this density level.
Transports computed between: 0-2000, 0-280; 280-2000; 0-bottom
1. From Geostrophy: Transports.gif
2. From the velocity fields:
Using the transverse velocity:
1. Total velocity transports from UT
2. Velocity referenced at 2000m transports from UT
A.4 Section Sud
A.4.a Section.gif
A.4.b Temperature, Salinity
1. Sections: Temperature.gif , Salinity.gif
2. Relation TS: TetaS.gif
A.4.c Velocity
1. U_Roms.gif (0-1000m); U Roms (0-4000m)
2. V_Roms.gif
3. Geostrophic velocity relative to: 1000 m Ugeo.gif ; 2000m (with density)
4. The velocity across the section is the zonal velocity (UT=U_ROMS)
a. Velocity referenced at 1000 m U ROMS.gif
A.4.d Cumulated mass transport
The 26 sigma separates the surface layers from the bottom layers.
A fix depth at 260 m is chosen for the depth of this density level.
1. From Geostrophy: Transports.gif
2. From the velocity fields:
a.Using the transverse velocity: transports from UT
b. Velocity referenced at 1000 m: Transports from UT
B. OCCAM model 1/12°, Circulation in the domain
B.0 Circulation in the domain
B.0.a 0-2000m depth integrated velocity December 2004.gif averaged over 2004
B.0.b 0-265m depth integrated velocity December 2004.gif averaged over 2004
B.0.c 265-2000m depth integrated velocity.gif December 2004.gif averaged over 2004
B.0.d 0-Bottom depth integrated velocity December 2004.gif averaged over 2004
B.1 Averaged over year 2004
B.1.a Circulation in the domain
B.1.a.1 0-2000m depth integrated velocity averaged over 2004
.pdf plots for ALEX: occam.pdf; occam1.pdf; occam2.pdf
B.1.a.2 0-265m depth integrated velocity averaged over 2004
B.1.a.3 265-2000m depth integrated velocity.gif averaged over 2004
B.1.a.4 0-Bottom depth integrated velocity averaged over 2004
B.1.b Huon-Santo Section
B.1.b.1 Velocity along the Huon-santo Section UT
B.1.b.2 Cumulated transport
B.1.c Noumea-SAnto Section
B.1.c.1 Velocity along the Huon-santo Section UT
B.1.c.2 Cumulated transport
B.2 December 2004
B.2.a 0-2000m depth integrated velocity december 2004
B.2.b 0-265m depth integrated velocity december2004
B.2.c 265-2000m depth integrated velocity.gif december 2004
B.2.d 0-Bottom depth integrated velocity december 2004
B.3 Mean over 1992-2002
B.3.a 0-2000m depth integrated velocity mean
B.3.b 0-265m depth integrated velocity mean
B.3.c 265-2000m depth integrated velocity.gif mean
B.3.d 0-Bottom depth integrated velocity mean
C. ROMS model 1/6°, new climatological simulation
C.1 Circulation in the domain
C.1.a 0-2000m depth integrated velocity averaged
C.1.b 0-265m depth integrated velocity averaged
C.1.c 265-2000m depth integrated velocity.gif averaged
C.1.d 0-Bottom depth integrated velocity averaged
D. ROMS model 1/12°, Xavier's simulation, outputs are for the months of December for the last four climatological years. 24 outputs
D.1 Circulation in the domain: O-Bottom depth integrated velocity
D.1.a Mean ; Rms
D.1.b Individual fields: year 1 ; year 2 ; year 3 ; year 4
D.2 Circulation at 1000 m
D.2.a Mean ; Rms
D.3 Transport between Efate and Erromango using the averaged velocity in December: 8.5 Sv
D.4 Section Noumea-Santo
D.4. a Temperature: Mean ; Rms
D.4. b Salinity: Mean ; Rms
D.4.c Relation TS: ThetaS.gif
D.4.d Velocity
1. Zonal: Mean ; Rms
2. Meridional: Mean ; Rms
3. Velocity across the section (positive for the outflow)
a. Total velocity: Mean ; Rms ; December Year 1 ave1-3 December_Year 2
b. Geostrophic velocity: Mean ; Rms ; December_Year 2
D.4.e Cumulated transport: Mean ; RMS
D.5 Section Huon-Santo
D.5. a Temperature: Mean ; Rms
D.5. b Salinity: Mean ; Rms
D.5.c Relation TS: ThetaS.gif
D.5.d Velocity
1. Zonal: Mean ; Rms
2. Meridional: Mean ; Rms
3. Velocity across the section (positive for the outflow)
a. Total velocity: Mean ; Rms ; December Year 1 ave1-3 December_Year 2
b. Geostrophic velocity: Mean ; Rms ; December_Year 2
D.5.e Cumulated transport: Mean ; RMS
Xavier's work: ROMS simulation at 1/6° forced by a climatological ORCA05
1 Transports à travers le domaine fermé
B.1.a Transports_0-350m.pdf
B.1.b Transports_350-2000.pdf
2 Barotropic stream function
B.2.a Surface to bottom.pdf
B.2.b 0-350m.pdf
B.2.c 350-2000.pdf
Link to Alex's page