Vous êtes ici : Accueil / Evénements / Séminaires / Séminaires Septembre 2015-Août 2016 / Mardi 5 juillet - Stochastic low-frequency variability in the turbulent ocean: insights from a global simulation ensemble
Navigation
« Décembre 2016 »
Décembre
LuMaMeJeVeSaDi
1234
567891011
12131415161718
19202122232425
262728293031

Mardi 5 juillet - Stochastic low-frequency variability in the turbulent ocean: insights from a global simulation ensemble

Par semsou — Dernière modification 18/04/2016 10:09
Quand ? Le 05/07/2016,
de 11:00 à 12:00
Où ? Salle Lyot
Participants Thierry Penduff, LGGE Grenoble
Ajouter un événement au calendrier vCal
iCal

Thierry Penduff,

Laboratoire de Glaciologie et Géophysique de l'Environnement, Grenoble

 

Title : Stochastic low-frequency variability in the turbulent ocean: insights from a global simulation ensemble.


Abstract : Idealized models have demonstrated the chaotic behavior of the ocean variability at high Reynolds number, up to multi-decadal timescales. Unlike laminar ocean models used in most current climate projections, eddying OGCMs that will be used in future climate projections spontaneously generate a substantial intrinsic variability from eddy scales to multi-decadal/basin scales, with a chaotic character, and a marked signature on SSH and SST where air-sea fluxes are maximum in Nature. Whether and how this ocean-driven low-frequency chaotic variability may ultimately impact biogeochemistry, the atmosphere and climate is an important but unsettled question.

Before addressing this question in fully-coupled simulations, it is necessary to explicitly simulate, characterize and quantify over a long period the stochastic character and scales of the low-frequency oceanic variability at high Reynolds number under full reanalyzed forcing, with a focus on climate-relevant indexes. In the framework of the OCCIPUT ANR/PRACE project, we have performed and are currently analyzing a 50-member ensemble of 1/4° global ocean/sea-ice NEMO-based 1/4° hindcasts driven by the same reanalyzed 1958-2014 atmospheric forcing. After a common spinup, the spread of the ensemble is seeded by applying stochastic perturbations within each member for one year; eddy interactions then take control of the subsequent growth of the ensemble spread and of its cascade toward long space and time scales. 

Along with reduced-size North Atlantic sensitivity experiments, this global ensemble simulation provides a probabilistic description of the global ocean/sea-ice evolution over the last 5 decades over a wide range of spatio-temporal scales, and direct estimates of the chaotic ocean variability (from the ensemble spread) and of the actual constraint exerted by the atmosphere (variability of the ensemble mean). We will present our strategy, describe the strong imprints of the atmospherically-modulated ocean stochastic variability on temperature, AMOC, SSH and water mass properties with a focus on interannual and longer time scales.

Actions sur le document

logo cnes logo IRD Logo université de Toulouse Logo université Paul Sabatier Logo CNRS
Logo bibliothèque OBS Logo Observatoire Midi Pyrénées