Skip to content. | Skip to navigation

Laboratoire d’Etudes en Géophysique et Océanographie Spatiales

Personal tools

This is SunRain Plone Theme

Navigation

You are here: Home / Events / Seminars / Seminaires Septembre 2019-Août 2020 / Jeudi 7 Mai - Why do Benguela Niños lead Atlantic Niños?

Jeudi 7 Mai - Why do Benguela Niños lead Atlantic Niños?

by SEMSOU last modified Jun 18, 2020 03:40 PM
When May 07, 2020
from 11:00 AM to 12:00 PM
Where Webinaire
Add event to calendar vCal
iCal


Serena Illig

LEGOS, Toulouse, France

 

Title: Why do Benguela Niños lead Atlantic Niños?



Abstract: We investigate the lag between warm interannual Sea Surface Temperature (SST) events in the eastern equatorial Atlantic, the Atlantic Niños, and the occurrence of Benguela Niños along the southwestern Angolan coast. It is commonly agreed that both events are associated with equatorial and subsequent coastal-trapped wave propagations driven remotely by a relaxation of the trade-winds. Yet, we observe that coastal SST anomalies off Angola tend to precede the ones in the equatorial cold tongue region by ~1 month. We explain this counter-intuitive behavior using experimentation with a tropical Atlantic Ocean model. Using idealized wind-stress perturbations from a composite analysis, we simulate warm equatorial and coastal events over a stationary and then, seasonally-varying ocean mean-state. Results show that when wind-stress perturbations are confined to the western central equatorial Atlantic, the model yields equatorial events leading the coastal variability, consistent with the propagation path of the waves. This implies that neither the differences in the ocean stratification between the two regions (thermocline depths or modal wave contributions) nor its seasonal variability controls the timing between events. Only if wind-stress anomalies are prescribed in the coastal fringe, the coastal warming precedes the eastern equatorial SST anomaly peak, emphasizing the role of the local forcing in the phenology of Benguela Niños. Both warmings originate from a reduction in the strength of the South-Atlantic Anticyclone. Nevertheless, local processes initiate the coastal warming before the remotely-forced equatorial waves impact the eastern equatorial SST. Then, equatorward coastal wind anomalies, driven by a convergent anomalous circulation located on the warm Atlantic Niño, stop the remotely-forced coastal warming prematurely. In conclusion, this study shows evidence that Atlantic and Benguela Niños are connected via an ocean teleconnection associated with equatorial and coastal wave propagations, but they are also tied by a large-scale atmospheric circulation and ocean-atmosphere interactions.

Document Actions

Navigation